Abelianization Conjectures for Some Arithmetic Square Complex Groups

نویسنده

  • DIEGO RATTAGGI
چکیده

We extend a conjecture of Kimberley-Robertson on the abelian-izations of certain square complex groups.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-similar fractals and arithmetic dynamics

‎The concept of self-similarity on subsets of algebraic varieties‎ ‎is defined by considering algebraic endomorphisms of the variety‎ ‎as `similarity' maps‎. ‎Self-similar fractals are subsets of algebraic varieties‎ ‎which can be written as a finite and disjoint union of‎ ‎`similar' copies‎. ‎Fractals provide a framework in which‎, ‎one can‎ ‎unite some results and conjectures in Diophantine g...

متن کامل

Novikov Conjectures and Relative Hyperbolicity

We consider a class of relatively hyperbolic groups in the sense of Gromov and use an argument modeled after Carlsson–Pedersen to prove Novikov conjectures for these groups. This proof is related to [16, 17] which dealt with arithmetic lattices in rank one symmetric spaces and some other arithmetic groups of higher rank. Here we view the rank one lattices in this different larger context of rel...

متن کامل

Arithmetic Teichmuller Theory

By Grothedieck's Anabelian conjectures, Galois representations landing in outer automorphism group of the algebraic fundamental group which are associated to hyperbolic smooth curves defined over number fields encode all arithmetic information of these curves. The goal of this paper is to develope and arithmetic teichmuller theory, by which we mean, introducing arithmetic objects summarizing th...

متن کامل

Conjectures Concerning the Orders of the Torsion Subgroup, the Arithmetic Component Groups, and the Cuspidal Subgroup

We make several conjectures concerning the relations between the orders of the torsion subgroup, the arithmetic component groups, and the cuspidal subgroup of an optimal elliptic curve. These conjectures have implications for the second part of the Birch and Swinnerton-Dyer conjecture.

متن کامل

Large scale geometry, compactifications and the integral Novikov conjectures for arithmetic groups

The original Novikov conjecture concerns the (oriented) homotopy invariance of higher signatures of manifolds and is equivalent to the rational injectivity of the assembly map in surgery theory. The integral injectivity of the assembly map is important for other purposes and is called the integral Novikov conjecture. There are also assembly maps in other theories and hence related Novikov and i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005